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Abstract. The generalization ability of the reversed-wedge perceptron serving as a toy model
for multilayer neural networks is investigated. We analyse the decomposition of the version
space into disjoint cells belonging to different internal representations defined by the signs of
the aligning fields. The version space is characterized by the number and size of these cells and
their typical overlap with the teacher network.

For a small training set the system is unable to detect the structure of the patterns induced
by the teacher. Accordingly it performs as if storing random input–output patterns with very low
generalization ability and a large misfit in the internal representation. With increasing training
set size, cells with large misfit are eliminated at a much higher rate than those with internal
representation similar to that of the teacher. This results eventually in the discontinuous phase
transition to good generalization typical for multilayer neural networks.

1. Introduction

Learning and generalization in models of neural networks has been an active field of
statistical physics for the last 10 years [1–3]. A central tool of analysis is the phase
space approach introduced by Gardner [4] and extended by several authors [5–7]. Quite
detailed results are available for the most simple feed forward network, the perceptron
[8–10]. In this case the solution space is convex and consequently many properties can
be obtained within replica symmetry (RS). On the other hand, the perceptron is a rather
special case since the dimension of the input space, the number of adjustable parameters and
the Vapnik Chervoneukis (VC) dimension all coincide. Also, the class of implementable
Boolean functions between input and output is restricted to linearly separable functions.

It is hence natural to consider multilayer networks (MLN) involving one or several
hidden layers between input and output layer. These networks are much more powerful
than the simple perceptron. Already one hidden layer with sufficiently many units allows
one to implement any Boolean function between input and output [11]. However, at the
same time the statistical mechanics analysis is much more complicated. The possibility of
different internal representations of the patterns makes the solution space disconnected which
often implies replica symmetry breaking (RSB), an iterative scheme of approximations that
can be carried out completely for very few special examples only [12]. Usually the first or
the first few steps can be accomplished and one is left with approximations, the accuracy of
which is very difficult to quantify. For the problem of implementing random classifications
RSB has been found to be crucial for all MLN studied so far [13–15].
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If the target of learning is not a completely random classification, but is instead
provided by a so-called teacher MLN of the same architecture as the student network under
consideration, the task seems intuitively easier. Loosely speaking there is a lesser degree
of frustration and the quantitative implications of RSB are expected to be smaller. In fact
the results found up to now for the generalization performance of MLN were all obtained
assuming RS and they show good agreement with numerical simulations [16–18].

A detailed analytical investigation of the reliability of RS for the generalization problem
in MLN is rather complicated. However, recently it was shown that a simple perceptron
with a non-monotonous transfer function has storage properties very similar to a MLN [19].
It is hence tempting to use this mathematically much simpler so-called reversed-wedge
perceptron as a toy model for MLN. Following this idea the generalization ability of this
toy model was investigated and RS was shown to hold. The thermodynamically dominating
phases are always correctly described by RS, only the characterization of a metastable poorly
generalizing phase requires RSB [20].

In the present paper we extend this analysis of the generalization performance
of the reversed-wedge perceptron by an investigation of the cell size distribution of
internal representations. In a recent paper Monasson and O’Kane [21] have introduced
a powerful method to characterize the decomposition of the total Gardner volume into
cells corresponding to different internal representations. Applying this method to the
generalization problem of the reversed-wedge perceptron, we perform a detailed analysis
of the cell size distribution. This allows us to compare the relative importance of the
two different mechanisms of learning, namely the elimination of cells corresponding to
wrong internal representations and the shrinking of those corresponding to right ones. This
knowledge can then be used to highlight the subtleties of the transition from a poorly to a
well generalizing phase in MLN.

The importance of the organization of internal representations for the generalization
behaviour of MLN was noticed by several authors [16, 22, 23]. Very recently Monasson
and Zecchina [24] investigated the phase space structure for the generalization problem in
the parity and committee machine of tree architecture, mainly discussing the case of a large
number of hidden nodes and concentrating on the number (or entropy) of cells dominating
the version space. Their results for these more realistic models of MLN are similar to ours.
This shows that the reversed-wedge perceptron is indeed a suitable toy model for MLN. Its
simplicity allows us to investigate thefull distribution of cell sizes in both the poorly and
well generalizing phase.

The paper is organized as follows. In section 2 we discuss the generalization
performance of the reversed–wedge perceptron and establish the connection to MLN. Then
we recall the methods and main results of Monasson and O’Kane on the cell structure of
the Gardner volume in section 3. In section 4 we calculate the distribution of cell sizes for
the generalization problem of a reversed-wedge perceptron. In particular, we discuss how
this distribution differs between the well and the poorly generalizing phase. Most of the
calculations are relegated to the appendix. Finally section 5 contains our conclusions.

2. Generalization in the reversed-wedge perceptron

We investigate the generalization ability of the reversed-wedge perceptron, which is defined
as in [19]. The student perceptron is characterized by its continuous normalized couplings
J ∈ RN ,

∑N
k=1 J 2

k = N . For a binary input patternξ ∈ {−1, +1}N its output is defined by
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the reversed-wedge transfer function

σ(λ) = sgn(λ(λ − γ )) =
{

+1 : λ ∈ (−γ, 0) ∪ (γ, ∞)

−1 : λ ∈ (−∞, −γ ) ∪ (0, γ )

acting on the aligning field

λ = 1√
N

N∑
k=1

Jkξk.

The wedge parameterγ defines the region(−γ, γ ), where the output behaviour is reversed
in comparison with the standard perceptron. Therefore the same output can be obtained
with different signs of the aligning field. If one patternξ is to be stored for example
with positive output, the corresponding aligning field can be either positiveλ ∈ (γ, ∞) or
negativeλ ∈ (−γ, 0). This additional degree of uncertainty in the sign ofλ enriches this
model with the notion of an internal representation known from MLN. In fact it has been
shown in [19] that this model is equivalent to a parity machine with three hidden units and
appropriate thresholds.

In this paper we analyse the ability of a student reversed-wedge perceptron to learn
from examples the classification on the space of patterns defined by a teacher perceptron
with couplingsT and the same transfer function as the student. The set ofp = αN

examples consists of independent and equally distributed binary input patterns{ξµ} and the
corresponding teacher outputηµ = σ(uµ) with the aligning field

uµ = 1√
N

N∑
k=1

Tkξ
µ

k

of the teacher couplings.
The success of learning from examples is measured by the generalization errorεg

denoting the probability that after the training phase a randomly picked input is classified
at variance with the teacher. For many neural networksεg is a simple function of the
typical overlapR = (1/N)

∑
k TkJk between teacher and student. For the reversed-wedge

perceptron one finds [25]

εg = 2

( ∫ 0

−γ

Dt +
∫ ∞

γ

Dt

) [
H

(
Rt + γ√
1 − R2

)
+ H

(
Rt − γ√
1 − R2

)
− H

(
Rt√

1 − R2

)]
(1)

with Dt = dte−t2/2/
√

2π and H(x) = ∫ ∞
x

Dt . For N → ∞, R becomes self-averaging,
e.g. it is only a function of the training set sizeα. The standard technique to obtain
R(α) is to calculate the fractional volume of the version spaceV comprising all student
vectors J scoring perfectly on the training set [4, 8]. ForN → ∞, the entropy
s = limN→∞(1/N) logV is also assumed to become self-averaging with respect to the
quenched random variables{ξµ} and T . Employing the replica trick one obtains for the
averaged entropy

s = lim
N→∞

lim
n→0

〈〈V n〉〉ξµ,T − 1

Nn
(2)

whereV is given by

V =
∫

RN

dm(J)

p∏
µ=1

δσ(uµ),σ (λµ) (3)
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with the measure dm(J) = dNJδ(
∑

k J 2
k − N)/

∫
dNJδ(

∑
k J 2

k − N). The average over
T can be replaced by a trace over the possible teacher outputsηµ which yields, due to the
teacher-student symmetry [10],

s = lim
N→∞

lim
n→0

2αN 〈〈V n+1〉〉ξµ,ηµ − 1

Nn
. (4)

This expression is similar to the one for the storage problem with the important difference
that the number of replicas now tends to unity. Using standard techniques [4] one finds
within the RS approximation

2s = max
q

[
q + log(1 − q) + 4α

∫
Dtφq(t) logφq(t)

]
(5)

with

φq(t) = H

(√
qt + γ√
1 − q

)
+ H

(√
qt − γ√
1 − q

)
− H

( √
qt√

1 − q

)
. (6)

The order parameterq describes the typical overlap between two coupling vectors out of
version space. Due to the teacher-student symmetry one hasR = q.

0 1 2 3 4 5 6
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Figure 1. The generalization errorεg as a function ofα for γ = 0.8 (dashed curve),γ = 1.0
(full curve) andγ = 1.5 (dashed-dotted curve). The dotted curves mark unstable situations. The
discontinuous phase transition atαc from poorly to well generalizing is indicated via vertical
lines.

Solving the saddle-point equation forq numerically, one obtains the generalization error
εg via (1). εg is shown in figure 1 for three different values of the wedge parameterγ .
The full, dashed and dashed-dotted curves correspond to local maxima of the right-hand
side of equation (5), whereas the dotted curves belong to local minima (see figure 2). For
γ < γc ≈ 1.6025 there is always an interval [αw, αs] with two different local maxima of
the entropys(q). These correspond to a poorly and a well generalizing phase, respectively.
For zero or infinite wedge (γ = 0 or γ → ∞) one is, of course, led back to the normal
perceptron.

Learning always starts for small values ofα within the poorly generalizing phase with
large misfits of internal representations. With increasingα a well generalizing phase appears
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Figure 2. The entropys as a function of the order parameterq for γ = 1.0 and forα = 2.9
(dashed curve),α = 3.005 ≈ αc (full curve) andα = 3.1 (dashed-dotted curve). The poorly
and well generalizing phases correspond to the local maxima ofs.

at αw, being first subdominant. As shown in figure 2 learning reduces the volume of both
phases, but at a different rate. So a first-order phase transition from the poorly to the well
generalizing phase occurs atαc, where the entropies of the two phases coincide. The poorly
generalizing phase stays subdominant and disappears at the spinodal pointαs.

Although there is a discontinuous drop in the generalization error atαc it does not
decrease to zero as in the case of the Ising perceptron [9]. Here the transition to a much
reduced value of the generalization error occurs when the student uses predominantly the
same internal representation as the teacher to produce the correct output. In order to quantify
this interpretation we calculate the joint probability distributionp(uµ, λµ) of the aligning
fields for teacher and student and determine the probabilityP to have different signs ofuµ

andλµ:

P =
〈〈 ∫

duµ dλµ2(−uµλµ)p(uµ, λµ)

〉〉
ξµ

. (7)

Following [26] we get finally

P = 4

(
H(γ ) −

∫
Dt

[H((γ + √
qt)/

√
1 − q)]2

φq(t)

)
(8)

with q determined by equation (5) andφq as given above in (6). Forα = 0, u andλ are
uncorrelated Gaussian variables and one getsP(α = 0) = 4H(γ )(1 − 2H(γ )) coinciding
with (8) for q = 0. Note thatP is a continuous and monotonous function ofq, so that it
does not contain additional information, but just gives a new interpretation ofq. In figure 3
the probabilityP of a wrong internal representation is displayed for the three different
values ofγ also used in figure 1. SinceP = 0 only if q = 1 there is no collapse of the
version space to a single internal representation atαc. However, the number of patterns
with correct internal representation increases significantly.

The decrease ofεg with α has, therefore, two different aspects. The first is the continuous
shrinking of the phase space volume belonging to each particular internal representation.



3928 L Reimers and A Engel

0 1 2 3 4 5 6
10

-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

Figure 3. The probabilityP of a wrong internal representation as a function ofα for γ = 0.8
(dashed curve),γ = 1.0 (full curve) andγ = 1.5 (dashed-dotted curve). The dotted curves
correspond to local minima, whereas the full, dashed and dashed-dotted curves mark local
maxima of the entropy inq. αc is indicated via vertical lines.

The second is the discontinuous transition from the poorly generalizing phase with large
misfit between the internal representations to the well generalizing phase characterized by a
much enhanced similarity in internal representations. Within the standard Gardner approach
which is sketched above it is impossible to work out the two aspects seperately. This
separation will be carried out in detail in section 4.

Nevertheless, the above approach provides a lot of information on the learning process:
the a priori probability of wrong internal representationP(α = 0) has its maximal value
1
2 for γ0 ≈ 0.675, which fulfills

∫ ∞
γ0

Dt = ∫ γ0

0 Dt . It is tempting to callγ0 the most
difficult case for generalization, but it turns out thatP(α = 0, γ ) > P (α = 0, γ ′) does
not imply P(α, γ ) > P (α, γ ′) or εg(α, γ ) > εg(α, γ ′) for all values ofα as can already
be seen in figure 3 and figure 1. A special case occurs atγ1 = √

2 log 2 ≈ 1.1774 (i.e.∫ ∞
γ1

Dt t = ∫ γ1

0 Dt t): q is equal to zerofor the whole poorly generalizing phase. This
meansP(α) = P(α = 0) and εg(α) = 0 for α < αc ≈ 2.726, i.e. no information on the
teacher couplings is available forα < αc†. For any value ofα there are non-trivial worst
and optimal values forγ with respect toεg and another, in general, different worst value
of γ with respect toP . The reason for this is the fact that the wedge splits up thea priori
Gaussian distribution in an asymmetric way. For the same reason the limitsγ → 0 and
γ → ∞ approach the limit of the perceptron in two different ways:αw and αc tend to
infinity for γ → 0, whereas forγ > γc there is no phase transition at all. Qualitatively
this is the case because for largeγ the chance for a correct output using the wrong internal

† This special behaviour atγ = γ1 corresponds to a general result in the theory of unsupervised learning [30],
since the generalization problem is equivalent to an unsupervised learning problem with the pattern distribution

Probunsup(ξ
µ) =

{
2/2N : σ(uµ) = 1

0 : else.

We thank Peter Reimann for a discussion of this point.
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representation is very small so that no poorly generalizing phase can form.
How reliable are these RS results? In [20] we analysed the local and global stability of

the RS saddle point. The well generalizing phase turned out to be always correctly described
by the replica symmetric ansatz. This is different for the poorly generalizing phase: for
α < αc the RS solution is locally and globally stable, but forα > αc the by now metastable
poorly generalizing phase shows a continuous transition to one-step RSB. Therefore the RS
ansatz yields the correct values forαw andαc, but not for the spinodal pointαs, where the
poorly generalization phase disappears. The above calculation cannot explain whyαRSB is
very near toαc. This will become clear in section 4 where we will find a simple criterion
for the validity of RS.

The RS calculation does not only fail in the prediction of the absolute value ofαs, but
also in the way that it predicts the disappearance of the poorly generalizing phase.

In general, a phase can disappear by two means: first it may no longer be a local
maximum of the entropy, or second it remains a local maximum but its volume in phase
space shrinks to zero. For the case of a poorly generalizing phase the RS ansatzq = R � 1
impliess > −∞ for all α, sinces(q, α) given by equation (5) is finite for allq ∈ [0, ∞) and
for all α > 0. This means that in the RS ansatz it is not possible to describe the disappearance
of the poorly generalizing phase by a vanishing phase space volume. Hence the RS ansatz
only allows a disappearance via a spinodal point. In fact this happens in figure 1 atα = αs.
However, already the one-step RSB ansatz carried out in [20] proves this to be wrong and
the second scenario of disappearance is realized: atαRSB

s the poorly generalizing phase
disappears because its entropy tends to−∞ although it is a local maximum ofs(q, α) for
all α < αRSB

s .

3. Cell structure of the version space for the storage problem

In a very interesting recent paper [21] Monasson and O’Kane have shown how one can
extend the standard Gardner approach to learning and generalization in neural networks by
calculating the distribution of cell sizes of a given internal representation. They applied the
method to the storage problem of the reversed wedge perceptron. Meanwhile, multilayer
networks [24] and the standard perceptron [27, 28] have also been analysed along the same
lines. In the present section we recall the main results of Monasson and O’Kane for the
storage problem of the reversed-wedge perceptron as a preparation for the analogous analysis
of the generalization problem in the next section. For technical details the reader is referred
to [21] or the appendix of the present paper.

The basic idea is to decompose the total Gardner volumeVtot containing all coupling
vectors implementing the random input–output mapping under consideration into disjoint
volumesV (τ ) corresponding to a definite vectorτ = {τµ} of internal representations:

Vtot =
∑

τ

V (τ ). (9)

Here τµ = ±1 denotes the sign of the product of the local field
∑

k Jkξ
µ

k induced by the
input ξµ and the desired outputηµ, i.e.

V (τ ) =
∫

dm(J )

αN∏
µ=1

δσ(λµ),ηµθ(λµηµτµ). (10)

This decomposition is non-trivial due to the non-monotonous activation function of the
reversed-wedge perceptron which allows one to realize a positive output with a positive as
well as with a negative local field.
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The natural scale forV (τ ) is 2−αN [29] and it is convenient to introduce

k(τ ) = − 1

αN
logV (τ ) (11)

as measure of the cell size. Due to the random character of the patterns there will be a whole
spectrum of sizesk(τ ) extending from zero to infinity where the latter limit corresponds to
empty cells. In order to describe the distribution of cell sizes one determines the number
N (k) of cells of sizek or its logarithm

c(k) = 1

αN
log

∑
τ

δ(k − k(τ )) (12)

which can be interpreted as the microcanonical entropy of the spin systemτ with
Hamiltoniank(τ ). As such, it is assumed to be self-averaging with respect to the random
inputs and outputs and its disorder average can be calculated as a Legendre transform of
the corresponding Massieu function:

ϕ(β) = 1

αN

〈〈
log

∑
τ

e−βαNk(τ )

〉〉
. (13)

The replica calculation ofϕ(β) requires in its simplest variant (corresponding to RS) the
introduction of two order parameters;q1 denoting the typical overlap between coupling
vectors using thesame internal representation andq0 for the overlap between coupling
vectors usingdifferent internal representations. The resulting curvesc(k) for different
values ofα as obtained in [21] are shown in figure 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-0.4

-0.2
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0.4

0.6

(
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=2.0

= RSB

= c
stor.

Figure 4. The number of domains for the storage problem [21] as function of the domain
size for γ = 1 and different values ofα in a double logarithmic plot. The version space is
dominated by domains of sizek1 marked with dots. Forα = αRSB (here ≈ 3.0164) c(k1)

becomes negative, i.e. the number ofdominatingdomains ceases to be exponential inN . For
α = αstor

c (here≈ 4.636) thetotal number of domains becomes exponentially small.

For all values ofα there are two points of special interest. The first corresponds to the
maximum ofc(k) the location of which we denote byk0, the second is given by the points
β = dc/ dk = 1 indicated by the dots in figure 4. The corresponding size will be denoted by
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k1. From the definition ofc(k) it is clear thatk0 describes thetypical size of the cells since
cells of other sizes are exponentially less frequent. This means also that forN → ∞ the total
number of cells is given by eαNc(k0). For small values ofα one hasc(k0) = log 2 indicating
that all possible internal representations are possible. For larger values ofα, however,
k0 becomes infinite so that the cells are typically empty resulting inc(k0 = ∞) < log 2.
Storage of patterns stays possible as long as at least some non-empty cells remain, i.e. as
long asc(k) > 0 for somek. For α values withk0 = ∞, c(k) is monotonously increasing
and the storage capacityαstor

c is therefore given byc(αstor
c , k = ∞) = 0 (see figure 4).

Although cells of sizek0 are the most frequent ones, they are too small to contribute
significantly toVtot. The cells dominatingVtot are those of sizesk1 since

Vtot =
∑

τ

V (τ ) =
∫ ∞

0
dk N (k)V (k) =

∫ ∞

0
dk eαN [c(k)−k] . (14)

The saddle-point condition for the last integral gives dc/dk = 1, hence the integral is
dominated by cells of size(k1) [29]. Cells of larger size thank1 are too rare to be important,
those that are more frequent are too small. It is important to note that there is a valueαRSB

of α smaller thanαstor
c wherec(k1) becomes negative. Then the cells contributing most to

Vtot become exponentially rare which implies that in a calculation ofVtot replica symmetry
must be broken. We now clearly see in which way the approach of Monasson and O’Kane
goes beyond the standard Gardner analysis. The latter always calculates the volumeVtot

of the whole solution space. Since this volume is dominated by subcells which become
exponentially rare forα > αRSB the RS result forαstor

c derived from the conditionVtot = 0
is not reliable [19]. An improved expression forVtot for α > αRSB and hence forαstor

c
requires RSB. From the cell size distributionc(k), however, one infers thatαstor

c is related
to the total numberof cells, i.e. toc(k0), and not toc(k1). One can hence determineαstor

c
from c(k0) = 0 using the RS results forc(k0). It should be noted that the RS expression
for c(k) is of comparable complexity as the one-step RSB expression forVtot so that the
technical problems are similar. However, it is not known which corrections will result from
further breakings of RS in the calculation ofVtot, whereas it seems that RS is stable for the
calculation ofc(k0) [28]. In the following section we analyse the cell size distributionc(k)

for the generalization problem.

4. Cell structure of the version space for the generalization problem

Similar to the last section, the logarithmc(k) of the number of cells of sizek can be
determined. The only difference is the appearance of the new order parameterR. For some
values ofα andβ there are two solutions of the saddle-point equations forR. In this case
we denote the two resulting values ofc(k) by cpoor(k) andcwell(k), respectively. A sketch
of the calculation ofcpoor andcwell is given in the appendix.

For the discussion of the results we start with the poorly generalizing phase. Figure 5
displayscpoor(k) over αk for various values ofα. It is practically identical to figure 4.
Formally this is due to the fact that the order parameterR is rather small for the whole
poorly generalizing phase and that forR = 0 the expressions for the generalization and the
storage problem are identical. Qualitatively this means that in the poorly generalizing phase
the student is unable to discern the structure in the classifications provided by the teacher
and therefore performs as when implementing random input–output mappings.

As in the storage problem, the dots in figure 5 indicate the cells which dominate the
solution space. Those are correctly described within RS forα < αRSB whereαRSB is as
before given bycpoor(β = 1) = 0. For α > αRSB the number of domaines contributing
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Figure 5. The same as figure 4 for the poorly generalizing phase of the generalization
problem. The dots mark those domains which dominate this phase (forα > αc not the whole
version space).αRSB (here≈ 3.0218) indicates the onset of replica symmetry breaking. The
spinodal pointαs (here≈ 4.650) corresponds toαstor

c indicating the disappearance of the poorly
generalizing phase.

dominantly to the version space ceases to be exponential and RS must be broken. The reason
for this is again the same as in the storage problem. As long asc(k1) > 0, exponentially
many cells contribute toVtot, and hence the typical overlaps are with probability 1 overlaps
between different cells. The system is therefore correctly described by one overlap parameter
q0. If the number of contributing cells is less than exponential, overlaps of couplings within
the same domain get a non-negligible weight in the overlap distribution. Therefore at least
two-order parameters are needed for a correct description of the system. This is in perfect
agreement with the explicit one-step RSB solution investigated in [20] which appeared when
the breakpointm became less than unity.

The difference betweenαstor
RSB and α

poor
RSB is rather small, e.g. forγ = 1 we find

αstor
RSB ≈ 3.0164 andα

poor
RSB ≈ 3.0218. The poorly generalizing phase disappears at the

spinodal pointαs, where the total number of cells ceases to be exponential. Againαs is
almost identical to the corresponding quantityαstor

c of the storage problem. Forγ = 1
we find αs ≈ 4.650 andαstor

c ≈ 4.636. It should be emphasized that the similarity
between the poorly generalizing phase and the storage problem holds true for all values
of γ . The quantitative details depend onγ and the smaller the differences, the smaller the
corresponding value ofR.

We now turn to the well generalizing phase. Forα > αw ≈ 2.551, the function
ϕ(β, R) has two maxima with respect toR for some values ofβ. At this value of α
the well generalizing phase appears, therefore, in a window ofk-values. This is shown
in figure 6. The window is given by the dotted curve which results from∂2ϕ/∂R2 = 0
and theαk-axis. It opens forα = αw at k = k1 and, therefore, the value ofαw is
the same as the one found in the standard Gardner approach of section 2. Forα-values
slightly aboveαw one hascwell(k) < cpoor(k) for all values ofk, i.e. the well generalizing
phase is subdominant. Increasingα further results in a shift of bothc(k)-curves to the
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Figure 6. The same as figure 4 for the well generalizing phase. Atαw (here for γ = 1 :
αw ≈ 2.551) the well generalizing phase appears, consisting of domains of only one size. For
α > αw but not too large, only domains out of a finite interval of sizes contribute to this phase
and the most numerous ones are the smallest. For largeα the smallest domains have vanishing
volume (αk = ∞). The dotted curve connects the endpoints ofcw(k) for various values of
α. Sincecw(k) > 0 holds forβ = 1 for all values ofα the dominant domains of the well
generalizing phase are described correctly within the RS approximation.

right since cells are successively eliminated. This shift is quicker forcpoor(k) because the
presentation of new examples will usually eliminate more cells with smaller overlap with
the teacher. As a consequence one finds forα = αc ≈ 3.005 that there arek-values for
which cwell(k) > cpoor(k). Again the first value ofk for this to happen isk1 (see figure 7) so
that αc marks the thermodynamic transition from the poorly to the well generalizing phase,
again in accordance with section 2. Note that the total number of cells is still dominated
by the poorly generalizing phase. This is not surprising since the available phase space
is much larger for small values ofR than for larger values ofR. Therefore the picture
emerging forα ∼ αc is that a lot of very small cells with small values ofR exist, whereas
the comparatively few large cells dominating the total Gardner volumeVtot are already
forced to lie within a small cone around the teacher corresponding to a rather large value
of R. Note that the drop in the probabilityP for an internal representation different from
that of the teacher found atαc in section 2 is, therefore, not due to a reduction of the
number of possible internal representation (i.e. cells) but is induced by the replacement of
one set of very different internal representations by an equally big one (cwell(k1) = cpoor(k1))
containing rather similar internal representations.

As can be seen in figure 7, not onlycwell(k1) decreases with increasingα but even
αcwell(k1), i.e. the total number of dominating cells decreases. At the same timeαk1

increases. Forα → ∞, αcwell(k1) tends to zero from above andαk1 diverges corresponding
to the final condensation of the whole phase into the teacher coupling. On the other hand,
αcwell(k1) > 0 for all finite α implies that the well generalizing phase is always described
correctly within RS in accordance with the findings in [20].

For a generalization task the central problem is the decrease of the generalization error
with the sizeα of the training set. The corresponding increase ofR with α has two different
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Figure 7. The number of domains for the poorly and well generalizing phasescp (dashed curve)
andcw (full curve) for γ = 1 aroundαc as a function of the domain sizeαk (double logarithmic
plot). Forα < αc the poorly generalizing phase dominates on all sizes. Atα = αc the entropy
curvescp andcw touch in one point and forα > αc the well generalizing phase dominates on
an increasing interval of sizes. In each case thin lines refer to the subdominant phase whereas
the dominant phase is marked by a bold line. As before those domains which dominate each
phase are marked by bold dots.

reasons: the successive elimination of possible internal representations and the continuous
shrinking of the cell sizes corresponding to these internal representations. The detailed
cell size analysis performed above allows us to pinpoint the relative importance of these
two mechanisms. It turns out thatR is strictly decreasing withk for given α. Hence the
larger domains are those nearer to the teacher. Therefore additional training will eliminate
predominantly smaller cells resulting in a decreasing slope of thecwell(k)-curves as can be
seen in figure 6. As a consequence the bold pointcwell(k1), k1 moves more and more to the
largest domains.

We finally remark that there is a valueα0 of α such that forα > α0 the window of
k-values for whichcwell(k) > cpoor(k) extends tok → ∞. Then the poorly generalizing
phase is subdominant for all values ofk although it still comprises an exponential number
of cells. Forγ = 1 one findsα0 ≈ 4.12 (cf the curve forα = 4.0 in figure 6).

5. Conclusion

In the present paper we have investigated the generalization problem in the reversed-
wedge perceptron serving as a toy-model for multilayer neural networks. To this end
we investigated the decomposition of the version space into different cells corresponding
to different internal representations of the patterns of the training set. As learning proceeds
these cells shrink and are eventually successively eliminated until asymptotically only a few
tiny cells around the teacher coupling survive. Calculating the number, the size and the
orientation of the cells with respect to the teacher network, as a function of the training set
sizeα, a detailed description of the generalization behaviour emerges.

For small values ofα the version space comprises cells with a large variety of internal
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representations. These correspond to student networks with small overlap with the teacher
and form the poorly generalizing phase. The evolution of this phase with increasingα is
very similar to that of the solution space in the corresponding storage problem whererandom
input–output mappings are to be implemented. In particular, the description of this phase
requires replica symmetry breaking if the number of cells dominating the version space is
no longer exponential in the number of input neuronsN . On the other hand, there is always
a small but exponential number of cells highly correlated with the internal representations of
the teacher. These cells start to dominate the version space slightly before the important cells
of the poorly generalizing phase become non-exponential. This first-order transition to the
well generalizing phase composed of cells very near to the teacher couplings hence precedes
the replica symmetry breaking transition and ensures that, unlike the storage problem the
generalization problem, for multilayer nets can always be coherently described within the
replica symmetric formalism. It is hence also becoming clear why the poorly generalizing
phase requires replica symmetry breaking almost immediately after becoming metastable
[20].

Finally the discontinuous transition in the generalization behaviour typical for multilayer
nets can be characterized in more detail. The generalization error doesnot drop dramatically
at this transition because the number of internal representations consistent with the desired
input–output mappings is reduced significantly. Rather those internal representations similar
to the one used by the teacher start to dominate the version space.
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Appendix. The number of domains of the same size

The calculation of the number of domains in version space with volume

V (τ ) =
∫

dm(J)

αN∏
µ=1

δσ(uµ),σ (λµ)2(τµλµuµ) (15)

where dm(J) denotes the spherical normalization dm(J) = dNJδ(
∑

k J 2
k −

N)/
∫

dNJδ(
∑

k J 2
k − N) follows closely [21]. We introduce the size of a domain

k(τ ) = − 1

αN
logV (τ ) (16)

and compute the numberc of domains with sizek:

c(k) := 1

αN
log

∑
τ

δ(k − k(τ )). (17)

We calculate the Legendre transformϕ(β) of c(k) defined by

ϕ(β) := 1

αN
logZ = sup

k

[c(k) − βk] (18)

from the partition function

Z(β) :=
∑

τ

e−βαNk(τ ) =
∑

τ

V (τ )β . (19)
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Note thatZ(β = 1) is just the volume of the whole version space.
We assumeϕ to be self-averaging and apply the standard replica trick to perform the

pattern average:

〈〈logZ〉〉ξµ = lim
n→0

〈〈Zn〉〉ξµ − 1

n
. (20)

To computeZn we introducen replicas denoted by the indexa = 1, . . . , n

Zn =
n∏

a=1

Za =
∑
{τ a}

n∏
a=1

V (τ a)
β . (21)

In a similar way we cope withV (τ a)
β assuming thatβ ∈ N and introducing a second set

of replicas with indexα = 1, . . . , β for everya:

Zn =
∑
{τ a}

∫ ∏
a=1,...,n
α=1,...,β

dm(Jα
a )

∏
µaα

[δσ(uµ)σ (λ
µα
a )2(τµ

a λµαuµ)]. (22)

At the end of the calculation we will treat bothn and β as real numbers. The pattern
average works out in the usual way and gives rise to the order parameters

Rα
a = 1

N

N∑
k=1

TkJ
α
ka q

αβ

ab = 1

N

N∑
k=1

J α
kaJ

β

kb. (23)

In order to perform the limitn → 0 we use a replica symmetric ansatz for the order
parameters, i.e.

Rα
a = R q

αβ

ab =
{

q0 : a 6= b

q1 : a = b.
(24)

q1 is the typical overlap of two students belonging to the same domain (same vectorτ ),
whereasq0 gives the typical overlap of two students belonging to different domains.

Using these ansatzes we finally end up with

2αϕ(β)/β = extr
R,q0,q1

[
q0 − R2

1 − q1 + β1q
+ log(1 − q1) + 1

β
log

(
1 + β1q

1 − q1

)
+4α

β

∫
DtφR(t) log

∫
Ds[φ1(t, s)

β + φ2(t, s)
β ]

]
with 1q = q1 − q0,

φR(t) = H

(
Rt + γ

√
q0√

q0 − R2

)
+ H

(
Rt − γ

√
q0√

q0 − R2

)
− H

(
Rt√

q0 − R2

)
(25)

and

φ1(t, s) = H

(√
q0t + √

1qs + γ√
1 − q1

)
(26)

φ2(t, s) = H

(√
q0t + √

1qs − γ√
1 − q1

)
− H

(√
q0t + √

1qs√
1 − q1

)
. (27)

For β = 1, q1 drops out of the expression forϕ(β) and with the unique solutionq = R we
get back to the RS entropy of equation (5), i.e.αϕ(β)/β = s .

Solving the saddle-point equations forR, q0 andq1 numerically, we can now determine
k(β) = dϕ/ dβ andc(k) = ϕ + βk for the two phases.
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